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This is larger than the value 2×10–7 Nm–1 quoted in the definition
of the ampere. Hence it is important to eliminate the effect of the

earth’s magnetic field and other stray fields while standardising
the ampere.
The direction of the force is downwards. This direction may be

obtained by the directional property of cross product of vectors.
(b) When the current is flowing from south to north,

θ = 0o

f = 0
Hence there is no force on the conductor.

4.10  TORQUE ON CURRENT LOOP, MAGNETIC DIPOLE

4.10.1 Torque on a rectangular current loop in a uniform
magnetic field

We now show that a rectangular loop carrying a steady current I and

placed in a uniform magnetic field experiences a torque. It does not
experience a net force. This behaviour is analogous to

that of electric dipole in a uniform electric field

(Section 1.12).

We first consider the simple case when the
rectangular loop is placed such that the uniform

magnetic field B is in the plane of the loop. This is

illustrated in Fig. 4.21(a).
The field exerts no force on the two arms AD and BC

of the loop. It is perpendicular to the arm AB of the loop

and exerts a force F
1
 on it which is directed into the

plane of the loop. Its magnitude is,

F
1
 = I b B

Similarly, it exerts a force F
2
 on the arm CD and F

2

is directed out of the plane of the paper.

F
2
 = I b B = F

1

Thus, the net force on the loop is zero. There is a

torque on the loop due to the pair of forces F
1
 and F

2
.

Figure 4.21(b) shows a view of the loop from the AD

end. It shows that the torque on the loop tends to rotate
it anticlockwise. This torque is (in magnitude),

1 2
2 2

a a
F Fτ = +

( )
2 2

a a
IbB IbB I ab B= + =

    = I A B (4.26)

where A = ab is the area of the rectangle.

We next consider the case when the plane of the loop,

is not along the magnetic field, but makes an angle with
it. We take the angle between the field and the normal to

FIGURE 4.21 (a) A rectangular
current-carrying coil in uniform

magnetic field. The magnetic moment

m points downwards. The torque τττττ is
along the axis and tends to rotate the

coil anticlockwise. (b) The couple

acting on the coil.
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the coil to be angle θ (The previous case
corresponds to θ = π/2). Figure 4.22 illustrates

this general case.
The forces on the arms BC and DA are equal,

opposite, and act along the axis of the coil, which

connects the centres of mass of BC and DA. Being
collinear along the axis they cancel each other,
resulting in no net force or torque. The forces on

arms AB and CD are F
1
 and F

2
. They too are equal

and opposite, with magnitude,

F
1
 = F

2
 = I b B

But they are not collinear!  This results in a
couple as before. The torque is, however, less than
the earlier case when plane of loop was along the

magnetic field. This is because the perpendicular
distance between the forces of the couple has
decreased. Figure 4.22(b) is a view of the

arrangement from the AD end and it illustrates
these two forces constituting a couple. The
magnitude of the torque on the loop is,

1 2sin sin
2 2

a a
F Fτ θ θ= +

= I ab B sin θ

   = I A B sin θ (4.27)

As θ à 0, the perpendicular distance between

the forces of the couple also approaches zero. This
makes the forces collinear and the net force and
torque zero. The torques in Eqs. (4.26) and (4.27)

can be expressed as vector product of the magnetic moment of the coil
and the magnetic field. We define the magnetic moment of the current
loop as,

m = I A (4.28)

where the direction of the area vector A is given by the right-hand thumb

rule and is directed into the plane of the paper in Fig. 4.21. Then as the
angle between m and B is θ ,  Eqs. (4.26) and (4.27) can be expressed by
one expression

(4.29)

This  is analogous to the electrostatic case (Electric dipole of dipole
moment p

e
 in an electric field E).

ττ ××= p Ee

As is clear from Eq. (4.28), the dimensions of the magnetic moment are
[A][L2] and its unit is Am2.

From Eq. (4.29), we see that the torque τττττ vanishes when m is either

parallel or antiparallel to the magnetic field B. This indicates a state of
equilibrium as there is no torque on the coil (this also applies to any
object with a magnetic moment m). When m and B are parallel the

FIGURE 4.22 (a) The area vector of the loop
ABCD makes an arbitrary angle θ with

the magnetic field. (b) Top view of

the loop. The forces F
1
 and F

2
 acting

on the arms AB and CD
are indicated.
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equilibrium is a stable one. Any small rotation of the coil produces a
torque which brings it back to its original position. When they are

antiparallel, the equilibrium is unstable as any rotation produces a torque
which increases with the amount of rotation. The presence of this torque
is also the reason why a small magnet or any magnetic dipole aligns

itself with the external magnetic field.
If the loop has N closely wound turns, the expression for torque, Eq.

(4.29), still holds, with

m = N I A (4.30)

Example 4.11 A 100 turn closely wound circular coil of radius 10 cm
carries a current of 3.2 A. (a) What is the field at the centre of the
coil? (b) What is the magnetic moment of this coil?

The coil is placed in a vertical plane and is free to rotate about a
horizontal axis which coincides with its diameter. A uniform magnetic
field of 2T in the horizontal direction exists such that initially the

axis of the coil is in the direction of the field. The coil rotates through
an angle of 90° under the influence of the magnetic field.
(c) What are the magnitudes of the torques on the coil in the initial

and final position?  (d) What is the angular speed acquired by the
coil when it has rotated by 90°? The moment of inertia of the coil is
0.1 kg m2.

Solution
(a) From Eq. (4.16)

B
NI

R
=

µ0

2
Here, N = 100; I = 3.2 A, and R = 0.1 m. Hence,

B =
× × ×

×

−

−

4 10 10 3 2

2 10

7 2

1

π .
 =

× ×

×

−

−

4 10 10

2 10

5

1      (using π × 3.2 = 10)

    = 2 × 10–3 T
The direction is given by the right-hand thumb rule.

(b) The magnetic moment is given by Eq. (4.30),

m = N I A = N I π r2 = 100 × 3.2 × 3.14 × 10–2 = 10 A m2

The direction is once again given by the right-hand thumb rule.

(c) τ = m B×      [from Eq. (4.29)]

   sinm B θ=

Initially, θ = 0. Thus, initial torque τ
i
 = 0. Finally, θ = π/2 (or 90º).

Thus, final torque τ
f
 = m B = 10 × 2 = 20 N m.

(d)  From Newton’s second law,

I

where I  is the moment of inertia of the coil. From chain rule,

Using this,

I
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Example 4.12

(a) A current-carrying circular loop lies on a smooth horizontal plane.
Can a uniform magnetic field be set up in such a manner that
the loop turns around itself (i.e., turns about the vertical axis).

(b) A current-carrying circular loop is located in a uniform external
magnetic field. If the loop is free to turn, what is its orientation
of stable equilibrium? Show that in this orientation, the flux of

the total field (external field + field produced by the loop) is
maximum.

 (c) A loop of irregular shape carrying current is located in an external

magnetic field. If the wire is flexible, why does it change to a
circular shape?

Solution

(a) No, because that would require τττττ to be in the vertical direction.
But τττττ = I A × B, and since A of the horizontal loop is in the vertical
direction, τ would be in the plane of the loop for any B.

(b) Orientation of stable equilibrium is one where the area vector A
of the loop is in the direction of external magnetic field. In this
orientation, the magnetic field produced by the loop is in the same

direction as external field, both normal to the  plane of the loop,
thus giving rise to maximum flux of the total field.

(c) It assumes circular shape with its plane normal to the field to

maximise flux, since for a given perimeter, a circle encloses greater

area than any other shape.

4.10.2  Circular current loop as a magnetic dipole

In this section, we shall consider the elementary magnetic element: the
current loop. We shall show that the magnetic field (at large distances)

due to current in a circular current loop is very similar in behaviour to
the electric field of an electric dipole. In Section 4.6, we have evaluated
the magnetic field on the axis of a circular loop, of a radius R, carrying a

steady current I. The magnitude of this field is [(Eq. (4.15)],

( )

2
0

3/22 22

µ
=

+

I R
B

x R

and its direction is along the axis and given by the right-hand thumb
rule (Fig. 4.12). Here, x is the distance along the axis from the centre of

the loop. For x >> R, we may drop the R2 term in the denominator. Thus,

Integrating from θ = 0 to θ = π/2,
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0

32

IR
B

x

µ
=

Note that the area of the loop A = πR2. Thus,

0

32

IA
B

x

µ
=

π

As earlier, we define the magnetic moment m to have a magnitude IA,

m  = I A. Hence,

B
m

;
µ

0

3
2 πx

    
π

0

3

2

4 x

µ
=

m
[4.31(a)]

The expression of Eq. [4.31(a)] is very similar to an expression obtained
earlier for the electric field of a dipole. The similarity may be seen if we
substitute,

 0 01/µ ε→

e→m p  (electrostatic dipole)

 →B E   (electrostatic field)

We then obtain,

3
0

2

4
e

xε
=

π

p
E

which is precisely the field for an electric dipole at a point on its axis.
considered in Chapter 1, Section 1.10 [Eq. (1.20)].

It can be shown that the above analogy can be carried further. We
had found in Chapter 1 that the electric field on the perpendicular bisector
of the dipole is given by [See Eq.(1.21)],

E ;
p

e

x4
0

3
πε

where x is the distance from the dipole. If we replace p à m and 0 01/µ ε→

in the above expression, we obtain the result for B for a point in the

plane of the loop at a distance x  from the centre. For  x >>R,

B
m

;
µ

0

3
4π x

x R; >> [4.31(b)]

The results given by Eqs. [4.31(a)] and [4.31(b)] become exact for a

point magnetic dipole.
The results obtained above can be shown to apply to any planar loop:

a planar current loop is equivalent to a magnetic dipole of dipole moment

m = I A, which is the analogue of electric dipole moment p. Note, however,
a fundamental difference: an electric dipole is built up of two elementary
units — the charges (or electric monopoles). In magnetism, a magnetic

dipole (or a current loop) is the most elementary element. The equivalent
of electric charges, i.e., magnetic monopoles, are not known to exist.

We have shown that a current loop (i) produces a magnetic field (see

Fig. 4.12) and behaves like a magnetic dipole at large distances, and
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(ii) is subject to torque like a magnetic needle. This led Ampere to suggest
that all magnetism is due to circulating currents. This seems to be partly

true and no magnetic monopoles have been seen so far. However,
elementary particles such as an electron or a proton also carry an intrinsic

magnetic moment, not accounted by circulating currents.

4.10.3  The magnetic dipole moment of a revolving electron

In Chapter 12 we shall read about the Bohr model of the hydrogen atom.
You may perhaps have heard of this model which was proposed by the

Danish physicist Niels Bohr in 1911 and was a stepping stone

to a new kind of mechanics, namely, quantum mechanics.
In the Bohr model, the electron (a negatively charged particle)
revolves around a positively charged nucleus much as a

planet revolves around the sun. The force in the former case
is electrostatic (Coulomb force) while it is gravitational for
the planet-Sun case. We show this Bohr picture of the electron

in Fig. 4.23.
The electron of charge (–e)  (e = + 1.6 ×  10–19 C) performs

uniform circular motion around a stationary heavy nucleus

of charge +Ze. This constitutes a  current I, where,

e
I

T
= (4.32)

and T is the time period of revolution. Let r be the orbital

radius of the electron, and v the orbital speed. Then,

π2 r
T =

v
(4.33)

Substituting in Eq. (4.32), we have I = ev/2πr.
There will be a magnetic moment, usually denoted by µ

l
,

associated with this circulating current. From Eq. (4.28) its
magnitude is, µ

l
 = Iπr2 = evr/2.

The direction of this magnetic moment is into the plane

of the paper in Fig. 4.23. [This follows from the right-hand
rule discussed earlier and the fact that the negatively charged

electron is moving anticlockwise, leading to a clockwise current.]

Multiplying and dividing the right-hand side of the above expression by
the electron mass m

e
, we have,

( )
2

l e

e

e
m vr

m
µ =

    
2 e

e
l

m
= [4.34(a)]

Here, l is the magnitude of the angular momentum of the electron

about the central nucleus (“orbital” angular momentum). Vectorially,

µµµµµ
l = –

2
l

e

e

m
l          [4.34(b)]

The negative sign indicates that the angular momentum of the electron
is opposite in direction to the magnetic moment. Instead of electron with

FIGURE 4.23 In the Bohr model

of hydrogen-like atoms, the
negatively charged electron is
revolving with uniform speed

around a centrally placed
positively charged (+Z e)

nucleus. The uniform circular

motion of the electron
constitutes a current. The
direction of the magnetic

moment is into the plane of the
paper and is indicated

separately by ⊗.
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charge (–e), if we had taken a particle with charge (+q), the angular
momentum and magnetic moment would be in the same direction. The

ratio

l

2 e

e

l m

µ
= (4.35)

is called the gyromagnetic ratio and is a constant. Its value is 8.8 × 1010 C /kg
for an electron, which has been verified by experiments.

The fact that even at an atomic level there is a magnetic moment,

confirms Ampere’s bold hypothesis of atomic magnetic moments. This
according to Ampere, would help one to explain the magnetic properties
of materials. Can one assign a value to this atomic dipole moment?  The

answer is Yes. One can do so within the Bohr model. Bohr hypothesised
that the angular momentum assumes a discrete set of values, namely,

2

n h
l =

π
(4.36)

where n is a natural number, n = 1, 2, 3, .... and h is a constant named

after Max Planck (Planck’s constant) with a value h = 6.626 × 10–34 J s.

This condition of discreteness is called the Bohr quantisation condition.

We shall discuss it in detail in Chapter 12. Our aim here is merely to use

it to calculate the elementary dipole moment. Take the value n = 1, we

have from Eq. (4.34) that,

min( )
4

l

e

e
h

m
µ =

π

    
19 34

31

1.60 10 6.63 10

4 3.14 9.11 10

− −

−

× × ×
=

× × ×

    = 9.27 × 10–24 Am2 (4.37)

where the subscript ‘min’ stands for minimum. This value is called the

Bohr magneton.

Any charge in uniform circular motion would have an associated

magnetic moment given by an expression similar to Eq. (4.34). This dipole

moment is labelled as the orbital magnetic moment. Hence, the subscript

‘l’ in µ
l
. Besides the orbital moment, the electron has an intrinsic magnetic

moment, which has the same numerical value as given in Eq. (4.37). It is

called the spin magnetic moment. But we hasten to add that it is not as

though the electron is spinning. The electron is an elementary particle

and it does not have an axis to spin around like a top or our earth.

Nevertheless, it does possess this intrinsic magnetic moment. The

microscopic roots of magnetism in iron and other materials can be traced

back to this intrinsic spin magnetic moment.

4.11  THE MOVING COIL GALVANOMETER

Currents and voltages in circuits have been discussed extensively in

Chapters 3. But how do we measure them? How do we claim that
current in a circuit is 1.5 A or the voltage drop across a resistor is 1.2 V?
Figure 4.24 exhibits a very useful instrument for this purpose: the moving
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coil galvanometer (MCG). It is a device whose principle can be understood
on the basis of our discussion in Section 4.10.

The galvanometer consists of a coil, with many turns, free to rotate
about a fixed axis (Fig. 4.24), in a uniform radial magnetic field. There is
a cylindrical soft iron core which not only makes the field radial but also

increases the strength of the magnetic field.  When a current flows through
the coil, a torque acts on it. This torque is given by Eq. (4.26) to be

τ = NI AB

where the symbols have their usual meaning. Since the field is radial by
design, we have taken sin θ = 1 in the above expression for the torque.
The magnetic torque NIAB tends to rotate the coil. A spring S

p
 provides a

counter torque kφ that balances the magnetic torque NIAB; resulting in a
steady angular deflection φ. In equilibrium

kφ = NI AB

where k is the torsional constant of the spring; i.e. the restoring torque
per unit twist. The deflection φ is indicated on the scale by a pointer
attached to the spring. We have

φ =






NAB

k
I (4.38)

The quantity in brackets is a constant for a given
galvanometer.

The galvanometer can be used in a number of ways.

It can be used as a detector to check if a current is
flowing in the circuit. We have come across this usage
in the Wheatstone’s bridge arrangement. In this usage

the neutral position of the pointer (when no current is
flowing through the galvanometer) is in the middle of
the scale and not at the left end as shown in Fig.4.24.

Depending on the direction of the current, the pointer’s
deflection is either to the right or the left.

The galvanometer cannot as such be used as an
ammeter to measure the value of the current in a given

circuit. This is for two reasons: (i) Galvanometer is a

very sensitive device, it gives a full-scale deflection for

a current of the order of µA. (ii) For measuring
currents, the galvanometer has to be connected in

series, and as it has a large resistance, this will change

the value of the current in the circuit. To overcome

these difficulties, one attaches a small resistance r
s
,

called shunt resistance, in parallel with

the galvanometer coil; so that most of the current

passes through the shunt. The resistance of this

arrangement is,

R
G
 r

s 
/ (R

G
  + r

s
)   ;  r

s
         if    R

G
 >>  r

s

If r
s 
has small value, in relation to the resistance of

the rest of the circuit R
c
, the effect of introducing the

measuring instrument is also small and negligible. This

FIGURE 4.24 The moving coil

galvanometer. Its elements are
described in the text. Depending on
the requirement, this device can be

used as a current detector or for
measuring the value of the current

(ammeter) or voltage (voltmeter).
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arrangement is schematically shown in Fig. 4.25. The scale of this
ammeter is calibrated and then graduated to read off the current value

with ease. We define the current sensitivity of the galvanometer as the

deflection per unit current. From Eq. (4.38) this current sensitivity is,

NAB

I k

φ
= (4.39)

A convenient way for the manufacturer  to increase the sensitivity is
to increase the number of turns N. We choose galvanometers having
sensitivities of value, required by our experiment.

The galvanometer can also be used as a voltmeter to measure the
voltage across a given section of the circuit. For this it must be connected
in parallel with that section of the circuit. Further, it must draw a very

small current, otherwise the voltage measurement will disturb the original
set up by an amount which is very large. Usually we like to keep the
disturbance due to the measuring device below one per cent.  To ensure

this, a large resistance R is connected in series with the galvanometer.
This arrangement is schematically depicted in Fig.4.26. Note that the
resistance of the voltmeter is now,

R
G
 + R ; R :  large

The scale of the voltmeter is calibrated to read off the voltage value
with ease. We define the voltage sensitivity as the deflection per unit

voltage. From Eq. (4.38),

φ

V

NAB

k

I

V

NAB

k R
=







=







1

(4.40)

An interesting point to note is that increasing the current sensitivity
may not necessarily increase the voltage sensitivity. Let us take Eq. (4.39)

which provides a measure of current sensitivity. If N → 2N, i.e., we double
the number of turns, then

2
I I

φ φ
→

Thus, the current sensitivity doubles. However, the resistance of the
galvanometer is also likely to double, since it is proportional to the length
of the wire. In Eq. (4.40), N →2N, and R →2R, thus the voltage sensitivity,

V V

φ φ
→

remains unchanged. So in general, the modification needed for conversion
of a galvanometer to an ammeter  will be different from what is needed

for converting it into a voltmeter.

Example 4.13 In the circuit (Fig. 4.27) the current is to be

measured. What is the value of the current if the ammeter shown

(a) is a galvanometer with a resistance R
G
 = 60.00 Ω; (b) is a

galvanometer described in (a) but converted to an ammeter by a

shunt resistance r
s
 = 0.02 Ω; (c) is an ideal ammeter with zero

resistance?

FIGURE 4.25

Conversion of a
galvanometer (G) to
an ammeter by the

introduction of a
shunt resistance r

s
 of

very small value in

parallel.

FIGURE 4.26

Conversion of a
galvanometer (G) to a

voltmeter by the

introduction of a
resistance R of large

value in series.
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FIGURE 4.27

Solution
(a) Total resistance in the circuit is,

3 63GR + = Ω . Hence, I = 3/63 = 0.048 A.

(b) Resistance of the galvanometer converted to an ammeter is,

R r

R r

G s

G s+
=

×

+

60 0 02

60 0 02

Ω Ω

Ω

.

( . )  ; 0.02Ω

Total resistance in the circuit is,

0.02 3 3.02Ω + Ω = Ω . Hence, I = 3/3.02 = 0.99 A.

(c) For the ideal ammeter with zero resistance,
 I =  3/3 = 1.00 A

SUMMARY

1. The total force on a charge q moving with velocity v in the presence of

magnetic and electric fields B and E, respectively is called the Lorentz

force. It is given by the expression:
F = q (v × B + E)

The magnetic force q (v × B) is normal to v and work done by it is zero.

2. A straight conductor of length l and carrying a steady current I

experiences a force F in a uniform external magnetic field B,

F = I l × B

where|l| = l and the direction of l is given by the direction of the

current.

3. In a uniform magnetic field B, a charge q executes a circular orbit in

a plane normal to B. Its frequency of uniform circular motion is called

the cyclotron frequency and is given by:

2
c

q B

m
ν =

π

This frequency is independent of the particle’s speed and radius. This

fact is exploited in a machine, the cyclotron, which is used to
accelerate charged particles.

4. The Biot-Savart law asserts that the magnetic field dB due to an

element dl carrying a steady current I at a point P at a distance r from

the current element is:

0

3

d
d

4
I

r

µ ×
=

π

l r
B
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To obtain the total field at P, we must integrate this vector expression

over the entire length of the conductor.

5. The magnitude of the magnetic field due to a circular coil of radius R

carrying a current I at an axial distance x from the centre is

2
0

2 2 3/22( )

IR
B

x R

µ
=

+

At the centre this reduces to

0

2

I
B

R

µ
=

6. Ampere’s Circuital Law:  Let an open surface S be bounded by a loop

C. Then the Ampere’s law states that B l.d I=∫ µ
0

C

Ñ  where I refers to

the current passing through S. The sign of I is determined from the

right-hand rule. We have discussed a simplified form of this law. If B
is directed along the tangent to every point on the perimeter L of a

closed curve and is constant in magnitude along perimeter then,

BL = µ
0
 I

e

where I
e
 is the net current enclosed by the closed circuit.

7. The magnitude of the magnetic field at a distance R from a long,

straight wire carrying a current I is given by:

π

0

2

I
B

R

µ
=

The field lines are circles concentric with the wire.

8. The magnitude of the field B inside a long solenoid carrying a current
I is

B = µ
0
nI

where n is the number of turns per unit length. For a toroid one

obtains,

0

2

NI
B

r

µ
=

π

where N is the total number of turns and r is the average radius.

9. Parallel currents attract and anti-parallel currents repel.

10. A planar loop carrying a current I, having N closely wound turns, and
an area A possesses a magnetic moment m where,

m = N I A

and the direction of m is given by the right-hand thumb rule : curl

the palm of your right hand along the loop with the fingers pointing

in the direction of the current. The thumb sticking out gives the

direction of m (and A)

When this loop is placed in a uniform magnetic field B, the force F on

it is:  F = 0

And the torque on it is,

τ = m × B

In a moving coil galvanometer, this torque is balanced by a counter-

torque due to a spring, yielding

kφ = NI AB
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where φ  is the equilibrium deflection and k the torsion constant of

the spring.

11. An electron moving around the central nucleus has a magnetic moment

µ
l
 given by:

2
l

e
l

m
µ =

where l is the magnitude of the angular momentum of the circulating

electron about the central nucleus. The smallest value of µ
l
 is called

the Bohr magneton µ
B
 and it is  µ

B
 = 9.27×10–24 J/T

12. A moving coil galvanometer can be converted into a ammeter by

introducing a shunt resistance r
s
, of small value in parallel. It can be

converted into a voltmeter by introducing a resistance of a large value

in series.

Physical Quantity Symbol Nature Dimensions Units Remarks

Permeability of free µ
0

Scalar [MLT –2A–2] T m A–1 4π × 10–7 T m A–1

space

Magnetic Field B Vector [M T –2A–1] T (telsa)

Magnetic Moment m Vector [L2A] A m2 or J/T

Torsion Constant k   Scalar [M L2T –2]     N m rad–1 Appears in MCG

POINTS TO PONDER

1. Electrostatic field lines originate at a positive charge and terminate at a

negative charge or fade at infinity. Magnetic field lines always form

closed loops.

2. The discussion in this Chapter holds only for steady currents which do

not vary with time.

When currents vary with time Newton’s third law is valid only if momentum
carried by the electromagnetic field is taken into account.

3. Recall the expression for the Lorentz force,

F = q (v × B + E)

This velocity dependent force has occupied the attention of some of the

greatest scientific thinkers. If one switches to a frame with instantaneous

velocity v, the magnetic part of the force vanishes. The motion of the
charged particle is then explained by arguing that there exists an

appropriate electric field in the new frame. We shall not discuss the

details of this mechanism. However, we stress that the resolution of this

paradox implies that electricity and magnetism are linked phenomena

(electromagnetism) and that the Lorentz force expression does not imply

a universal preferred frame of reference in nature.
4. Ampere’s Circuital law is not independent of the Biot-Savart law. It

can be derived from the Biot-Savart law. Its relationship to the

Biot-Savart law is similar to the relationship between Gauss’s law and

Coulomb’s law.
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EXERCISES

4.1 A circular coil of wire consisting of 100 turns, each of radius 8.0 cm

carries a current of 0.40 A. What is the magnitude of the magnetic
field B at the centre of the coil?

4.2 A long straight wire carries a current of 35 A. What is the magnitude

of the field B at a point 20 cm from the wire?

4.3 A long straight wire in the horizontal plane carries a current of 50 A
in north to south direction. Give the magnitude and direction of B

at a point 2.5 m east of the wire.

4.4 A horizontal overhead power line carries a current of 90 A in east to
west direction. What is the magnitude and direction of the magnetic

field due to the current 1.5 m below the line?

4.5 What is the magnitude of magnetic force per unit length on a wire
carrying a current of 8 A and making an angle of 30º with the

direction of a uniform magnetic field of  0.15 T?

4.6 A 3.0 cm wire carrying a current of 10 A is placed inside a solenoid
perpendicular to its axis. The magnetic field inside the solenoid is

given to be 0.27 T. What is the magnetic force on the wire?

4.7 Two long and parallel straight wires A and B carrying currents of
8.0 A and 5.0 A in the same direction are separated by a distance of

4.0 cm. Estimate the force on a 10 cm section of wire A.

4.8 A closely wound solenoid 80 cm long has 5 layers of windings of 400
turns each. The diameter of the solenoid is 1.8 cm. If the current

carried is 8.0 A, estimate the magnitude of B inside the solenoid
near its centre.

4.9 A square coil of side 10 cm consists of 20 turns and carries a current

of 12 A. The coil is suspended vertically and the normal to the plane
of the coil makes an angle of 30º with the direction of a uniform
horizontal magnetic field of magnitude 0.80 T. What is the magnitude

of torque experienced by the coil?

4.10 Two moving coil meters, M
1
 and M

2
 have the following particulars:

R
1
 = 10 Ω,  N

1
 = 30,

A
1
 = 3.6 × 10–3 m2, B

1
 = 0.25 T

R
2
 = 14 Ω,  N

2
 = 42,

A
2
 = 1.8 × 10–3 m2, B

2
 = 0.50 T

(The spring constants are identical for the two meters).

Determine the ratio of (a) current sensitivity and (b) voltage
sensitivity of M

2
 and M

1
.

4.11 In a chamber, a uniform magnetic field of 6.5 G (1 G = 10–4 T) is
maintained. An electron is shot into the field with a speed of
4.8 × 106 m s–1 normal to the field. Explain why the  path of the

electron is a circle. Determine the radius of the circular orbit.
(e = 1.5 × 10–19 C, m

e
 = 9.1×10–31 kg)

4.12 In Exercise 4.11 obtain the frequency of revolution of the electron in

its circular orbit. Does the answer depend on the speed of the
electron? Explain.

4.13 (a) A circular coil of 30 turns and radius 8.0 cm carrying a current

of 6.0 A is suspended vertically in a uniform horizontal magnetic
field of magnitude 1.0 T. The field lines make an angle of 60°
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with the normal of the coil. Calculate the magnitude of the
counter torque that must be applied to prevent the coil from
turning.

(b) Would your answer change, if the circular coil in (a) were replaced
by a planar coil of some irregular shape that encloses the same
area? (All other particulars are also unaltered.)

ADDITIONAL EXERCISES

4.14 Two concentric circular coils X and Y of radii 16 cm and 10 cm,
respectively, lie in the same vertical plane containing the north to

south direction. Coil X has 20 turns and carries a current of 16 A;
coil Y has 25 turns and carries a current of 18 A. The sense of the
current in X is anticlockwise, and clockwise in Y, for an observer

looking at the coils facing west. Give the magnitude and direction of
the net magnetic field due to the coils at their centre.

4.15 A magnetic field of 100 G (1 G = 10–4 T) is required which is uniform

in a region of linear dimension about 10 cm and area of cross-section
about 10–3 m2. The maximum current-carrying capacity of a given
coil of wire is 15 A and the number of turns per unit length that can

be wound round a core is at most 1000 turns m–1. Suggest some
appropriate design particulars of a solenoid for the required purpose.
Assume the core is not  ferromagnetic.

4.16 For a circular coil of radius R and N turns carrying current I, the
magnitude of the magnetic field at a point on its axis at a distance x
from its centre is given by,

( )

2
0

3/22 22

IR N
B

x R

µ
=

+

(a) Show that this reduces to the familiar result for field at the
centre of  the coil.

(b) Consider two parallel co-axial circular coils of equal radius R,
and number of turns N, carrying equal currents in the same
direction, and separated by a distance R. Show that the field on

the axis around the mid-point between the coils is uniform over
a distance that is small as compared to R, and is given by,

00.72
NI

B
R

µ
= ,  approximately.

[Such an arrangement to produce a nearly uniform magnetic
field over a small region is known as Helmholtz coils.]

4.17 A toroid has a core (non-ferromagnetic) of inner radius 25 cm and
outer radius 26 cm, around which 3500 turns of a wire are wound.
If the current in the wire is 11 A, what is the magnetic field
(a) outside the toroid, (b) inside the core of the toroid, and (c) in the
empty space surrounded by the toroid.

4.18 Answer the following questions:

(a) A magnetic field that varies in magnitude from point to point
but has a constant direction (east to west) is set up in a chamber.

A charged particle enters the chamber and travels undeflected
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along a straight path with constant speed. What can you say
about the initial velocity of the particle?

(b) A charged particle enters an environment of a strong and

non-uniform magnetic field varying from point to point both in
magnitude and direction, and comes out of it following a
complicated trajectory. Would its final speed equal the initial

speed if it suffered no collisions with the environment?

(c) An electron travelling west to east enters a chamber having a
uniform electrostatic field in north to south direction. Specify

the direction in which a uniform magnetic field should be set
up to prevent the electron from deflecting from its straight line
path.

4.19 An electron emitted by a heated cathode and accelerated through a
potential difference of 2.0 kV, enters a region with uniform magnetic
field of 0.15 T. Determine the trajectory of the electron if the field

(a) is transverse to its initial velocity, (b) makes an angle of 30º with
the initial velocity.

4.20 A magnetic field set up using Helmholtz coils (described in Exercise

4.16) is uniform in a small region and has a magnitude of 0.75 T. In
the same region, a uniform electrostatic field is maintained in a
direction normal to the common axis of the coils. A narrow beam of

(single species) charged particles all accelerated through 15 kV
enters this region in a direction perpendicular to both the axis of
the coils and the electrostatic field. If the beam remains undeflected

when the electrostatic field is 9.0 × 10–5 V m–1, make a simple guess
as to what the beam contains. Why is the answer not unique?

4.21 A straight horizontal conducting rod of length 0.45 m and mass

60 g is suspended by two vertical wires at its ends. A current of 5.0 A
is set up in the rod through the wires.

(a) What magnetic field should be set up normal to the conductor

in order that the tension in the wires is zero?

(b) What will be the total tension in the wires if the direction of
current is reversed keeping the magnetic field same as before?

(Ignore the mass of the wires.)  g = 9.8 m s–2.

4.22 The wires which connect the battery of an automobile to its starting
motor carry a current of 300 A (for a short time). What is the force

per unit length between the wires  if they are 70 cm long and 1.5 cm
apart? Is the force attractive or repulsive?

4.23 A uniform magnetic field of 1.5 T exists in a cylindrical region of
radius10.0 cm, its direction parallel to the axis along east to west. A

wire carrying current of 7.0 A in the north to south direction passes

through this region. What is the magnitude and direction of the

force on the wire if,

(a) the wire intersects the axis,

(b) the wire is turned from N-S to northeast-northwest direction,

(c) the wire in the N-S direction is lowered from the axis by a distance

of 6.0 cm?
4.24 A uniform magnetic field of 3000 G is established along the positive

z-direction. A rectangular loop of sides 10 cm and 5 cm carries a

current of 12 A. What is the torque on the loop in the different cases

shown in Fig. 4.28?  What is the force on each case? Which case
corresponds to stable equilibrium?
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FIGURE 4.28

4.25 A circular coil of 20 turns and radius 10 cm is placed in a uniform
magnetic field of 0.10 T normal to the plane of the coil. If the current
in the coil is 5.0 A, what is the

(a) total torque on the coil,
(b) total force on the coil,
(c) average force on each electron in the coil due to the magnetic

field?
(The coil is made of copper wire of cross-sectional area 10–5 m2, and
the free electron density in copper is given to be about

1029 m–3.)
4.26 A solenoid 60 cm long and of radius 4.0 cm has 3 layers of windings

of 300 turns each. A 2.0 cm long wire of mass 2.5 g lies inside the

solenoid (near its centre) normal to its axis; both the wire and the
axis of the solenoid are in the horizontal plane. The wire is connected
through two leads parallel to the axis of the solenoid to an external

battery which supplies a current of 6.0 A in the wire. What value of
current (with appropriate sense of circulation) in the windings of
the solenoid can support the weight of the wire?  g = 9.8 m s–2.

4.27 A galvanometer coil has a resistance of 12 Ω and the metre shows
full scale deflection for a current of 3 mA. How will you convert the
metre into a voltmeter of range 0 to 18 V?

4.28 A galvanometer coil has a resistance of 15 Ω and the metre shows
full scale deflection for a current of 4 mA. How will you convert the
metre into an ammeter of range 0 to 6 A?
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